f
Neutrium
Donate
Contact
Podcast
Articles

Welcome to Neutrium

Neutrium is a knowledge base of engineering topics, centred mainly around chemical engineering design challenges faced by engineers in their daily work. We created Neutrium to bridge the gap between theory and practice. Feel free to ask a question, leave feedback or take a look at one of our in-depth articles.


Volume and Wetted Area of Partially Filled Vertical Vessels
Volume and Wetted Area of Partially Filled Vertical Vessels

The calculation of the wetted area and volume of a vertical vessel is required for engineering tasks such fire studies and the determination of level alarms and control set points. However the calculation of these parameters is complicated by the geometry of the vessel, particularly the heads. This article details formulae for calculating the wetted area and volume of these vessels for various types of curved ends including: hemispherical, torispherical, semi-ellipsoidal and bumped ends.


Flow in Open Channels and Partially Filled Pipes
Flow in Open Channels and Partially Filled Pipes

The transport of fluid under gravity is often achieved using partially filled pipes, channels, flumes, ditches and streams. To determine the slope and elevation change required or the flow rate that is achievable one must be able to calculate the head loss and friction factor. This article provides relationships for the calculation of head loss and friction factor for fluids flowing via these conduits.


Manning Characteristic Roughness
Manning Characteristic Roughness

The Manning Characteristic Roughness is used to characterise the surfaces over which water can flow in streams, channels, ditches and flumes. This article presents a reference of roughness values for many common materials of construction for channels and natural formations of streams.


Mach Number

The Mach number is the ratio of the relative velocity of a fluid to the local speed of sound. This article provides the equation for the calculation of the Mach number and a discussion of its uses.


Speed of Sound in Fluids and Fluid in Pipes

This article provides the formulae for the calculation of speed of sound in fluids and fluid filled circular pipes. The speed of sounds is important in piping systems for the calculation of choked flow for gases and pressure transient analysis of liquid filled systems.


Bulk Modulus of Elasticity of Liquids

The bulk modulus or elasticity is a measure of the resistance to compression of a substance. This article presents the bulk modulus for various liquids.


Comparing Volumetric Flow Rates for Equivalent Pressure Loss

Standard volumetric flow rates of a fluid are often used to describe the capacity of a vent or pressure relief device. To determine how this capacity compares for another fluid under different pressure and temperature conditions a conversion must be made on the basis of equivalent pressure loss. This article describes the method for calculating the volumetric flow rate of a gas which will give the equivalent pressure drop to another gas through a fixed restriction such as a vent.


Torricelli’s Law
Torricelli’s Law

This article presents Torricelli’s law, a simplified method of estimating the velocity of fluid passing through an open orifice under static pressure.


Bernoulli’s Equation
Bernoulli’s Equation

Bernoulli’s Principal is an important observation in fluid dynamics which states that for an inviscid flow, an increase in the velocity of the fluid results in a simultaneous decrease in pressure or a decrease in the fluid's potential energy. This principal is often represented mathematically in the many forms of Bernoulli’s equation. This article presents some useful forms of Bernoulli’s Equations and their simplifying assumptions.


Exponent Laws
Exponent Laws

Algebraic expressions can often be simplified and subsequently solved through the use of the exponent laws (also called laws of indices or power laws). These laws allow an equation to be manipulated into a form which provides enhanced readability or opens up potential simplifications and substitutions. This article provides a reference for these laws.